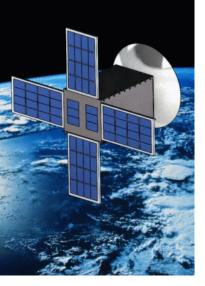
FMI Commercial "New" Space Products

Crystals & Oscillators for SmallSat & CubeSat Applications


Performance Excellence | Smallest & Lightest Product Offerings | Hi-Rel & Low Cost

C33

Compelling Frequency & Timing Solutions for Mission Success **F**MI

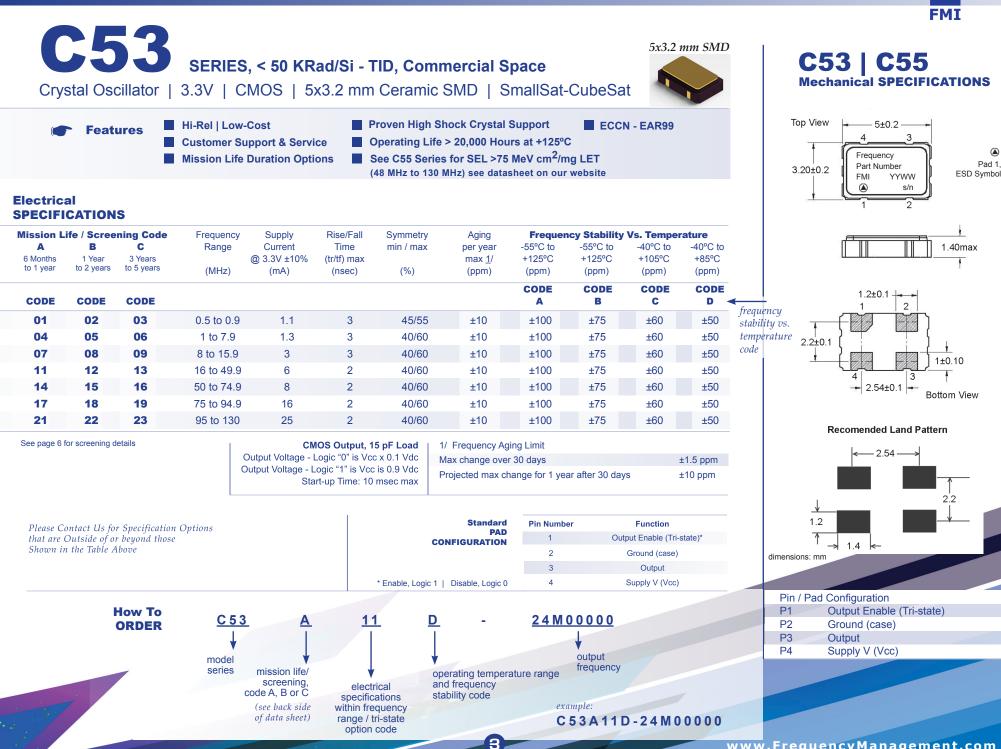
www.FrequencyManagement.com

Mission Success Optimized Cost

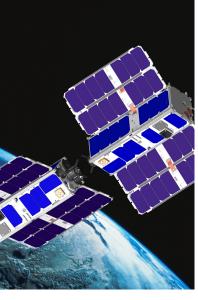
Frequency Control Solutions for Commercial Space Missions

SmallSat	CubeSat	NanoSat	MicroSat

FMI has been at the forefront of providing the most reliable timing devices and clock solutions to the ever-expanding market for space missions utilizing miniature scale electronics, often referred to as CubeSat, SmallSat and Nanosat, etc. Our customers have been selecting from our standard product offering for miniaturized commercial space (C-Series) which benefits from years of FMI's extensive development in miniature scale, highly reliable and cost-efficient solutions used in commercial high reliability applications. We are uniquely blending the best attributes of cost effective assemblies used in industrial/telecomm applications with the benefits for a wide variety of space applications.


The FMI C-Series product offering is a direct response to the demand for optimized size, weight, power and costs associated wirh satellite miniaturization that often correlates with diverse mission life objectives. The C-Series offers optimum solutions for the ever-expanding scope of CubeSat and SmallSat missions as well as constellations of small spacecraft.

In pioneering the efficient and miniaturized commercial space grade clock solutions, FMI takes a strong position and sets an example to encourage the industry to contribute and reduce any potential space debris regardless of the applications mentioned above which may include IoT and M2M small satellite networks or the satellites that may be utilized for remote sensing.


FMI is uniquely prepared to efficiently respond to the timing and frequency control requirements of miniaturized satellite designers and manufacturers.

2

FMI Model

FMI Model

Customer Selected Mission Life

C88 SERIES, including package variations **C73, C75, C83 & C78** < 50 KRad/Si - TID, Commercial Space

Crystal Oscillator | 3.3V | CMOS | 5x7mm Ceramic SMD Gull Wing Leads | SmallSat-CubeSat

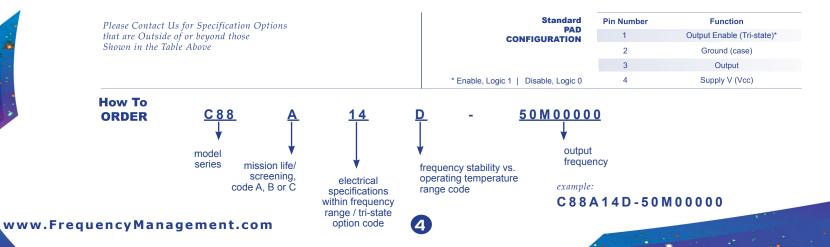
- Features
 Hi-Rel | Low-Cost
 Customer Support & Services
 Mission Life Duration Options
- Proven High Shock Crystal Support
- Operating Life > 20,000 Hours at +125°C

See C85 Series for SEL >75 MeV cm²/mg LET (48 MHz to 130 MHz) see datasheet on our website

C88 Heritage MIL QPL B Level Similarity is M55310/41, 5x7 Gull Wing

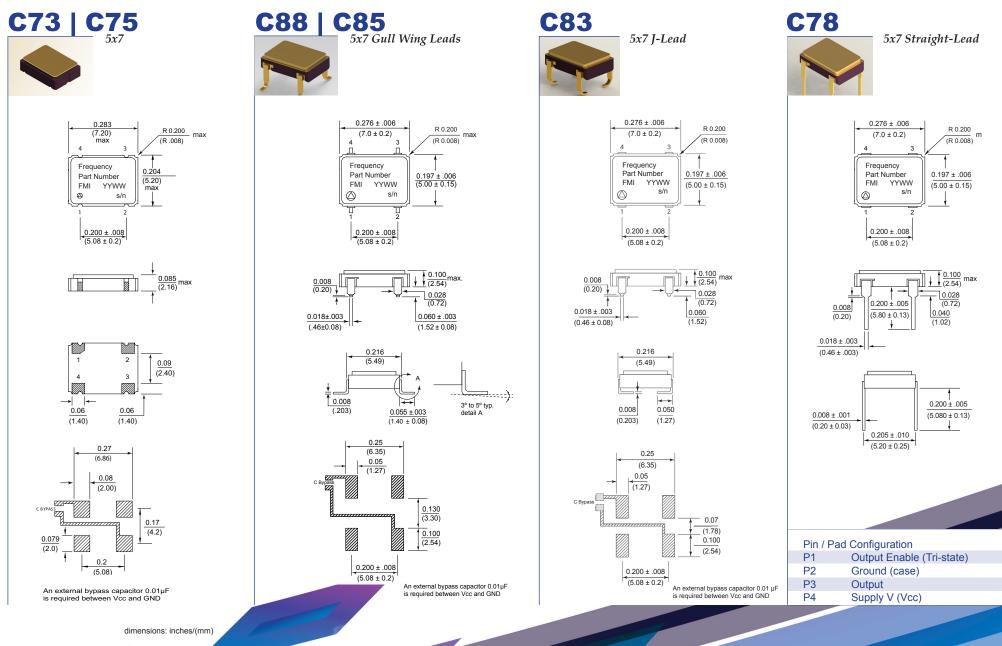
Electrical SPECIFICATIONS

See page 6 for screening details


Mission Life / Screening Code		Frequency	Supply	Rise/Fall	Symmetry	Aging	Freque	ncy Stability	v Vs. Tempe	rature		
A 6 Months to 1 year	B 1 Year to 2 years	C 3 Years to 5 years	Range (MHz)	Current @ 3.3V ±10% (mA)	Time (tr/tf) max (nsec)	min / max (%)	per year max <u>1</u> / (ppm)	-55°C to +125°C (ppm)	-55°C to +125°C (ppm)	-40°C to +105°C (ppm)	-40°C to +85°C (ppm)	
CODE	CODE	CODE						CODE A	CODE B	CODE C	CODE D	-
01	02	03	0.5 to 0.9	1	3	48/52	±10	±100	±75	±60	±50	frequency stability v
04	05	06	1 to 7.9	1.2	3	48/52	±10	±100	±75	±60	±50	temperatu
07	08	09	8 to 15.9	3	3	45/55	±10	±100	±75	±60	±50	code
11	12	13	16 to 49.9	6	3	45/55	±10	±100	±75	±60	±50	
14	15	16	50 to 79.9	8	2	40/60	±10	±100	±75	±60	±50	
17	18	19	80 to 94.9	10	2	40/60	±10	±100	±75	±60	±50	
21	22	23	95 to 130	25	2	40/60	±10	±100	±75	±60	±50	

CMOS Output, 15 pF Load	1/
Output Voltage - Logic "0" is Vcc x 0.1 Vdc	M
Output Voltage - Logic "1" is Vcc is 0.9 Vdc Start-up Time: 10 msec max	Pr

1/ Frequency Aging Limit


Vdc	Max change over 30 days	±1.5 ppm
Vdc max	Max change over 30 days Projected max change for 1 year after 30 days	±10 ppm

ECCN - EAR99

Mechanical Specifications 5x7 Variations

5

Solutions for High-Performance Low-Cost Missions

3.2 x 2.5 mm Ceramic SMD Smallest Package Footprint Available 3.3V CMOS, 500 KHz to 100 MHz Please Contact Us or Visit our Website for Details

Pr	oduct
Hig	hlight

Mission Life Screenin	g- A, B & C OPTIONS		CODE	
Screening	Method Options:	Α	В	С
Non-Destruct Bond Pull	MIL-STD-883, Method 2023	•	•	•
Internal Visual	MIL-STD-883, Method 2017	•	•	•
Stabilization (Vacuum) Bake	MIL-STD-883, Method 1008, Condition C, 150°C, 24 hours min	•	•	•
Temperature Cycling	MIL-STD-883, Method 1010, Condition B, 10 Cycles	•	•	•
Constant Acceleration	MIL-STD-883, Method 2001, Condition A (Y1 only, 5000 g's)		•	•
PIND Test	MIL-STD-883, Method 2020, Condition B, 5 passes max			•
Seal: Fine Leak	MIL-STD-883, Method 1014, Condition A1			•
	MIL-STD-202, Method 112, Condition C, 111A		•	
Seal: Gross Leak	MIL-STD-202, Method 112, Condition D	•	•	•
Electrical Test	Functional Test Only at +23°C	•	•	•
Marking & Serialization	MIL-STD-1285	•	•	•
Electrical Test	Nominal Vcc & Extremes and Nominal Temp and Extremes		•	•
Burn-in (load)	+125°C, Nominal Supply Voltage and Burn-in load, 160 hours min		•	•
Burn-in (no-load)	+125°C, Nominal Supply Voltage and Burn-in load, 48 hours min	•		
Interim Electrical	Functional Test Only			•
Burn-in (load)	+125°C, Nominal Supply Voltage and Burn-in load, 160 hours min			•
		•	•	•
Radiography MIL-STD-883, Method 2012				•
Frequency Aging	MIL-PRF-55310, +70°C Condition			•
Frequency/Temperature Stability MIL-PRF-55310, Over temperature extremes, 20 points equally spaced				•
External Visual & Mechanical	MIL-STD-883, Method 2009	•	•	•

note: other options, screening levels and custom test plans available.

Eliminating the Need for System Component Redundancy

Environmental COMPLIANCE						
Environmental	Specification	Method	Condition			
Vibration – Sine	MIL-STD-202	Method 204	Condition D 20g, 10 to 2 KHz			
Vibration – Random	MIL-STD-202	Method 214	Condition 1 30g rms, 10 to 2 KHz Randor			
Shock	MIL-STD-202	Method 213	Condition I 100g, 6 ms, F:1500, 0.5 ms			
Seal Test	MIL-STD-883	Method 1014	Condition A1 Fine Leak			
Seal Test	MIL-STD-883	Method 1014	Condition C1 Gross Leak			
Temperature Cycling	MIL-STD-883	Method 1010	Condition B 10 Cycles Minimum			
Constant Acceleration	MIL-STD-883	Method 2001	Condition A 5000g, Y1 Axis			
Thermal Shock	MIL-STD-202	Method 107	Condition B			
Ambient Pressure	MIL-STD-202	Method 105	Condition C			
Resistance to Soldering Heat	MIL-STD-202	Method 210	Condition C			
Moisture Resistance	MIL-STD-202	Method 106	with 7B Sub-cycle			
Salt Atmosphere (corrosion)	MIL-STD-883	Method 1009	Condition A (24 hrs)			
Terminal Strength	MIL-STD-202	Method 211	Test Condition D			
Solderability	MIL-STD-883	Method 2003				
Resistance to Solvents	MIL-STD-202	Method 215				

Packaged Crystals for Space Applications

8 MHz to 150 MHz Crystals in ruggedized 5x7 mm & 20 MHz to 150 MHz Crystals in 5x3.2 smd packages. These crystals are also available in a variety of both thru-hole and smd packages. Please inquire.

Contact Us

Frequency Management International 15302 Bolsa Chica Street Huntington Beach, CA 92649

tel: 714 373 8100 fax: 714 373 8700 toll free (USA): 800 800 9825

Sales@FrequencyManagement.com

Qualification & Specification References

MIL-STD-202

MIL-STD-883

MIL-STD-790 Certified FMI is QPL per MIL-PRF-55310 ISO 9001:2015 Pb-free RoHS Certified

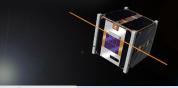
Military Reference Specifications

MIL-PRF-55310 Oscillators, Crystal Controlled, General Specification For MIL-PRF-38534 Hybrid Microcircuits, General Specification For Test Method Standard, Electronic and Electrical Components Test Methods and Procedures for Microelectronics MIL-STD-1686 Electrostatic Discharge Control Program for Protection of Electrical and Electronic Parts, Assemblies and Equipment

Materials

1. Package Materials: Ceramic, Alumina 90% min

2. External Lead Plating Material: Gold plated Kovar, 0.15 µm (60 µ inch) min, over 2.0 µm (80 µ inch) min Nickel


Products for Space Applications

Contact us for assistance with your specification. We will provide you with the technical support and the required documentation.

FREQUENCY MANAGEMENT | International 15302 Bolsa Chica Street Huntington Beach, CA 92649

> Sales@FrequencyManagement.com Tel. 714 373 8100 Fax. 714 373 8700 **800 800 9825 (USA Only)**

SmallSat | CubeSat

Designed Specifically for Lower-Cost Space Missions

www.FrequencyManagement.com

Performance Excellence | Smallest & Lightest Product Offerings | Hi-Rel & Low Cost